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Maximum Speed of Quantum Evolution
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In this paper, we discuss the question of the minimum time needed for any state of
a given quantum system to evolve into a distinct (orthogonal) state. This problem is
relevant to deriving physical limits in quantum computation and quantum information
processing. Here, we consider both cases of nonadiabatic and adiabatic evolution and
we derive the Hamiltonians corresponding to the minimum time evolution predicted by
the Margolus–Levitin theorem.
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1. INTRODUCTION

In this paper, we discuss the question of the minimum time needed for any
state of a given quantum system to evolve into a distinct (orthogonal) state. The
problem of maximum speed of quantum dynamical evolution is relevant to deriving
physical limits in quantum computation and quantum information processing.
Recently, Margolus and Levitin (1997) have derived the minimum time required
for the evolution from any state to an orthogonal state of the quantum system.
However, they have considered only the nonadiabatic case and they have not given
a Hamiltonian corresponding to the minimum evolution time. Here, we consider
both cases of nonadiabatic and adiabatic evolution and we derive the Hamiltonians
corresponding to the minimum time evolution predicted by the Margolus–Levitin
theorem.

2. THE NONADIABATIC CASE

Consider a quantum system, which evolves according to the Schrödinger
equation

i
d

dt
|ξ (t)〉 = Ĥ (t)|ξ (t)〉 (1)
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where Ĥ is the Hamiltonian of the system (we let h = 1). For the nonadiabatic
case, we assume that Ĥ is time-independent. Also, we consider the system in the
initial state |ξ (0)〉 = |ψ〉, of mean energy E = 〈ψ Ĥ |ψ〉. The Margolus–Levitin
theorem (Margolus and Levitin, 1997) asserts that it takes at least a time T⊥ ≥
π/(2E) for the system to evolve from, ξ (0)〉 = |ψ〉 to an orthogonal state, ξ (T⊥)〉 =
|ϕ〉. This result complements the time–energy uncertainty relation, which requires

T⊥ ≥ π/(2�E), where �E =
√

〈ψ(Ĥ − E)2|ψ〉 is the energy spread of the state.
Combining the two above inequalities one obtains the minimum time required for
the evolution to an orthogonal state (Margolus and Levitin, 1998):

T⊥ = T (E , �E) = max

(
π

2E
,

π

2�E

)
(2)

However, the Margolus–Levitin theorem does not provide a Hamiltonian corre-
sponding to the minimum evolution time. Farhi and Gutmann (1996) showed that
the following Hamiltonian

Ĥ = E(|ψ〉〈ψ | + |ϕ〉〈ϕ|) (3)

evolves the state |ψ〉 into the state |ϕ〉 after a time

TFG(E , α) = π

2Eα
(4)

where α = 〈ψ |ϕ〉. This implies that

lim
α→0

TFG(E , α) = ∞ (5)

Thus, if the states |ψ〉 and |ϕ〉 are orthogonal, the evolution fails.
Now, let us consider the Hamiltonian

Ĥ = E
(
e−iθ |ψ〉〈ϕ| + eiθ |ϕ〉〈υ|) (6)

where E > 0, θ is a constant phase, and |ψ〉 and |ε〉 are orthogonal: 〈ψ |ϕ〉 =
0. After a time t , the state of the quantum system, evolving according to this
Hamiltonian and initially in the state |ξ (0)〉 = ψ〉, is given by:

|ξ (t)〉 = exp(−i Ĥ t)|ψ〉 (7)

It is well known, that for any operator Â, with Â2 = Î (where Î is the identity
operator) we have

exp(it Â) = cos(t) Î + i sin(t) Â (8)

Now, taking into account that Ĥ 2 = E2 Î , a simple calculation gives

|ξ (t)〉 = cos(Et)|ψ〉 − ieiθ sin(Et)|ϕ〉 (9)
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Taking θ = π/2, the minimum evolution time from |ψ〉 to |ϕ〉 is

T (E) = π

2E
(10)

which is exactly the time predicted by the Margolus–Levitin theorem.

3. THE ADIABATIC CASE

Consider a quantum system in a state |ξ (t)〉, which evolves according to the
Schrödinger equation (1). If the Hamiltonian is time-independent and the system
is initially in its ground state, then it will remain in this state. More specifically, if
|E0; t〉 and |E1; t〉 are the ground and first excited states of the Hamiltonian Ĥ (t),
with energies E0 and E1, we define the minimum gap between these eigenvalues

ωmin = min
0≤t≤T

[E1(t) − E0(t)] (11)

and the maximum value of the matrix element of d Ĥ (t)/dt between the eigenstates
as

max = max
0≤t≤T

∣∣∣∣∣
〈

d Ĥ

dt

〉
1,0

∣∣∣∣∣ = max
0≤t≤T

∣∣∣∣∣〈E1;t |
d Ĥ

dt
|E0; t〉

∣∣∣∣∣ (12)

The adiabatic theorem states that if we prepare the system at time t = 0 in its
ground state |E0; t〉 and let it evolve under the Hamiltonian Ĥ (t) for a time T , then

|〈E0; T |ξ (T )〉|2 ≥ 1 − ε2 (13)

provided that

maxω
−2
min ≤ ε (14)

where 0 < ε � 1 (Messiah, 1976; Bransden and Joachain, 2000).
This result can be used to design a new type of quantum algorithm based on

a time-dependent Hamiltonian (Farhi et al., 2000). Assume we can build a Hamil-
tonian for which we know that the ground state encodes the solution of a problem.
Then, it suffices to prepare the system in the ground state of another Hamiltonian,
easy to build, and change progressively this Hamiltonian into the other one in order
to get, after measurement, the sought solution with large probability. The adiabatic
theorem imposes the minimum time it takes for this switching to be adiabatic.

The adiabatic method has been studied only for the linear interpolation case,
where the “straight line” interpolation from initial (Ĥ0) to final (Ĥ1) Hamiltonian
is taken (Farhi et al., 2000; Roland and Cerf, 2001; van Dam, Mosca and Vazirani,
2001):

Ĥ (s) = (1 − s)Ĥ 0 + s Ĥ 1 (15)
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where s = t/T is the rescaled time and T is the total time (or delay schedule).
The initial state of the system |ξ (0)〉 = |ψ〉 is the ground state, with energy E0 =
−E(E > 0), of the initial Hamiltonian

Ĥ0 = −E |ψ〉〈ψ | (16)

We would like to evolve this state, using the linear interpolating Hamiltonian, to
the final state |ξ (1)〉 = |ϕ〉, which is the ground state, with energy E0 = −E , of
the final Hamiltonian

Ĥ1(θ ) = −E |ϕ〉〈ϕ| (17)

We assume that |ψ〉 and |ϕ〉 are not orthogonal: 〈ψ |ϕ〉 = cos(θ ). Therefore we can
write

|ϕ〉 = cos(θ )|ψ〉 + sin(θ )|σ 〉 (18)

where 〈ψ |σ 〉 = 0. In the two-dimensional space spanned by |σ 〉 and |ψ〉 the linear
interpolating Hamiltonian reads

Ĥ (s, θ ) = −E

[
1 − s sin2(θ ) 1

2 s sin(2θ )
1
2 s sin(2θ ) s sin2(θ )

]
(19)

The ground state and the first excited state of the above Hamiltonian are

E0,1(s, θ ) = E

2

[
1 ∓

√
1 − 4s(1 − s) sin2(θ )

]
(20)

Thus the energy gap is given by

ω(s, θ ) = E
√

1 − 4s(1 − s) sin2(θ ) (21)

Also, it is easy to show that the matrix element of d Ĥ (t)/dt between the eigenstates
is given by

(t , θ ) =
∣∣∣∣ds

dt

∣∣∣∣ (s, θ ) = E

T

∣∣∣∣ sin(2θ )

2ω(s, θ )

∣∣∣∣ (22)

The extreme values are obtained for s = 1/2:

ωmin(θ ) = E cos(θ ) (23)

max(θ ) = E

T
| sin(θ )| (24)

By substituting (23) and (24) into the adiabaticity condition (14), we obtain the
minimum evolution time for the linear interpolation case (Farhi et al., 2000):

T0(E , θ ) = 1

Eε

| sin(θ )|
cos2(θ )

(25)
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A better result can be obtained by assuming that s = s(t) is a smooth function
satisfying the boundary conditions: s(0) = 0, s(T ) = 1 (Rolard and Cerf, 2001;
van Dam, Mosca, and Vazirani, 2002). In this case, the local version of the adiabatic
evolution condition reads ∣∣∣∣ds

dt

∣∣∣∣ ≤ ε
ω2(s, θ )

(s, θ )
(26)

and the minimum running time can be obtained by integration (Roland and Cerf,
2001; van Dam, Mosca and Vazirani, 2002):

T1(Eθ ) =
∫ 1

0
ds

(s, θ )

ω2(s, θ )
= 1

Eε
tan(θ ) (27)

However, one can see that when the initial and final states are orthogonal the
minimum running time becomes infinite:

lim
θ→π/2

T0,1(E , θ ) = ∞ (28)

In fact, in the orthogonal case (θ = π/2) the minimum gap is ωmin(π/2) = 0 and
the adiabaticity conditions (14) and (26) are not satisfied. Thus, the adiabatic
evolution (based on the above described linear interpolation method) fails when
the initial and final states are orthogonal.

In what follows we will show that the adiabatic evolution can be done in
finite time by using a simple nonlinear interpolation method. There is no reason
not to consider nonlinear interpolation. The adiabatic algorithm will work taking
any path Ĥ (s), as long as the adiabaticity condition is satisfied.

We assume that |ψ〉 and |ϕ〉 are orthogonal: 〈ψ |ϕ〉 = 0. Now, let us consider
the following Hamiltonian:

Ĥ (s) = −E |ξ (s)〉〈ξ (s)| (29)

where

|ξ (s)〉 = cos
(π

2
s
)

|ψ〉 + sin
(π

2
s
)

|ϕ〉 (30)

is the ground state, with eigenvalue E0 = −E(E > 0), and s = t/T ∈ [0, 1].
In the |ψ〉, |ϕ〉 basis, the adiabatic Hamiltonian reads

Ĥ (s) = −E sin2

(
π

2
s

)
|ψ〉〈ψ | − E cos2

(
π

2
s

)
|ϕ〉〈ϕ|

−E sin(πs)(|ψ〉〈ϕ| + |ϕ〉〈ψ |) (31)

Thus, |ξ (s)〉 performs an interpolation from the initial wave function |ψ〉 = |ξ (0)〉
to final wave function |ϕ〉 = |ξ (1)〉, and Ĥ (s) performs an interpolation from the
initial Hamiltonian Ĥ0 = Ĥ (0) = −E |ψ〉〈ψ | to final Hamiltonian Ĥ1 = Ĥ (1) =
−E |ϕ〉〈ϕ|.
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The first excited state is E1 = 0. Thus, the energy gap is constant: ωmin = E .
Also, taking into account that

d Ĥ

dt
= ds

dt

d Ĥ

ds
= 1

T

d Ĥ

ds
(32)

the matrix element can be calculated analytically and it is given by

max = π E

2T
(33)

Thus, the minimum evolution time from |ψ〉 to |ϕ〉, in the adiabatic case, is

T (E) = π

2Eε
(34)

where E is the minimum gap between the first excited state and the ground state
of the system.

4. CONCLUSIONS

In this paper, we have discussed the question of the minimum time needed
for any state of a given quantum system to evolve into a distinct (orthogonal)
state. First, we have considered the case of nonadiabatic evolution and we have
derived the Hamiltonian corresponding to the minimum time evolution predicted
by the Margolus–Levitin theorem. In the adiabatic case we have proposed a simple
nonlinear interpolation method which gives an analogue result to the Margolus–
Levitin theorem.
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